feat(*): first mvp
This commit is contained in:
115
backend/src/bot/modules/ai/agent.py
Normal file
115
backend/src/bot/modules/ai/agent.py
Normal file
@@ -0,0 +1,115 @@
|
||||
from collections.abc import Awaitable, Callable
|
||||
from dataclasses import dataclass
|
||||
|
||||
from pydantic_ai import (
|
||||
Agent,
|
||||
BinaryContent,
|
||||
ModelMessage,
|
||||
ModelRequest,
|
||||
ModelResponse,
|
||||
TextPart,
|
||||
UserPromptPart,
|
||||
)
|
||||
from pydantic_ai.models.google import GoogleModel
|
||||
from pydantic_ai.providers.google import GoogleProvider
|
||||
|
||||
from .models import FollowUpOptions
|
||||
from .prompts import DEFAULT_FOLLOW_UP
|
||||
|
||||
StreamCallback = Callable[[str], Awaitable[None]]
|
||||
|
||||
|
||||
@dataclass
|
||||
class ImageData:
|
||||
data: bytes
|
||||
media_type: str
|
||||
|
||||
|
||||
LATEX_INSTRUCTION = "For math, use LaTeX: $...$ inline, $$...$$ display."
|
||||
|
||||
DEFAULT_SYSTEM_PROMPT = (
|
||||
"You are a helpful AI assistant. Provide clear, concise answers."
|
||||
)
|
||||
|
||||
|
||||
def create_text_agent(
|
||||
api_key: str,
|
||||
model_name: str = "gemini-3-pro-preview",
|
||||
system_prompt: str | None = None,
|
||||
) -> Agent[None, str]:
|
||||
provider = GoogleProvider(api_key=api_key)
|
||||
model = GoogleModel(model_name, provider=provider)
|
||||
base_prompt = system_prompt or DEFAULT_SYSTEM_PROMPT
|
||||
full_prompt = f"{base_prompt} {LATEX_INSTRUCTION}"
|
||||
return Agent(model, system_prompt=full_prompt)
|
||||
|
||||
|
||||
def create_follow_up_agent(
|
||||
api_key: str,
|
||||
model_name: str = "gemini-2.5-flash-lite",
|
||||
system_prompt: str | None = None,
|
||||
) -> Agent[None, FollowUpOptions]:
|
||||
provider = GoogleProvider(api_key=api_key)
|
||||
model = GoogleModel(model_name, provider=provider)
|
||||
prompt = system_prompt or DEFAULT_FOLLOW_UP
|
||||
return Agent(model, output_type=FollowUpOptions, system_prompt=prompt)
|
||||
|
||||
|
||||
def build_message_history(history: list[dict[str, str]]) -> list[ModelMessage]:
|
||||
messages: list[ModelMessage] = []
|
||||
for msg in history:
|
||||
if msg["role"] == "user":
|
||||
messages.append(
|
||||
ModelRequest(parts=[UserPromptPart(content=msg["content"])])
|
||||
)
|
||||
else:
|
||||
messages.append(ModelResponse(parts=[TextPart(content=msg["content"])]))
|
||||
return messages
|
||||
|
||||
|
||||
async def stream_response( # noqa: PLR0913
|
||||
text_agent: Agent[None, str],
|
||||
message: str,
|
||||
history: list[dict[str, str]] | None = None,
|
||||
on_chunk: StreamCallback | None = None,
|
||||
image: ImageData | None = None,
|
||||
images: list[ImageData] | None = None,
|
||||
) -> str:
|
||||
message_history = build_message_history(history) if history else None
|
||||
|
||||
all_images = images or ([image] if image else [])
|
||||
|
||||
if all_images:
|
||||
prompt: list[str | BinaryContent] = [message]
|
||||
prompt.extend(
|
||||
BinaryContent(data=img.data, media_type=img.media_type)
|
||||
for img in all_images
|
||||
)
|
||||
else:
|
||||
prompt = message # type: ignore[assignment]
|
||||
|
||||
stream = text_agent.run_stream(prompt, message_history=message_history)
|
||||
async with stream as result:
|
||||
async for text in result.stream_text():
|
||||
if on_chunk:
|
||||
await on_chunk(text)
|
||||
return await result.get_output()
|
||||
|
||||
|
||||
async def get_follow_ups(
|
||||
follow_up_agent: Agent[None, FollowUpOptions],
|
||||
history: list[dict[str, str]],
|
||||
image: ImageData | None = None,
|
||||
) -> list[str]:
|
||||
message_history = build_message_history(history) if history else None
|
||||
|
||||
if image:
|
||||
prompt: list[str | BinaryContent] = [
|
||||
"Suggest follow-up options based on this conversation and image.",
|
||||
BinaryContent(data=image.data, media_type=image.media_type),
|
||||
]
|
||||
else:
|
||||
prompt = "Suggest follow-up questions based on this conversation." # type: ignore[assignment]
|
||||
|
||||
result = await follow_up_agent.run(prompt, message_history=message_history)
|
||||
return result.output["options"]
|
||||
Reference in New Issue
Block a user